{ "cells": [ { "cell_type": "raw", "id": "e0edc331", "metadata": {}, "source": [ "Run in Google Colab" ] }, { "cell_type": "markdown", "id": "befaab00", "metadata": {}, "source": [ "# Meta Estimators in SciKeras\n", "\n", "In this notebook, we implement sklearn ensemble and tree meta-estimators backed by a Keras MLP model.\n", "\n", "## Table of contents\n", "\n", "* [1. Setup](#1.-Setup)\n", "* [2. Defining the Keras Model](#2.-Defining-the-Keras-Model)\n", " * [2.1 Building a boosting ensemble](#2.1-Building-a-boosting-ensemble)\n", "* [3. Testing with a toy dataset](#3.-Testing-with-a-toy-dataset)\n", "* [4. Bagging ensemble](#4.-Bagging-ensemble)\n", "\n", "## 1. Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "6c19254d", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:35:34.431765Z", "iopub.status.busy": "2024-04-10T00:35:34.431130Z", "iopub.status.idle": "2024-04-10T00:36:18.533964Z", "shell.execute_reply": "2024-04-10T00:36:18.533022Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: scikeras[tensorflow] in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (0.13.0)\r\n", "Collecting keras@ git+https://github.com/keras-team/keras.git@master (from scikeras[tensorflow])\r\n", " Cloning https://github.com/keras-team/keras.git (to revision master) to /tmp/pip-install-4jfgw6f9/keras_3ce4ecba346f48d3aaacdf2d3a1bb16e\r\n", " Running command git clone --filter=blob:none --quiet https://github.com/keras-team/keras.git /tmp/pip-install-4jfgw6f9/keras_3ce4ecba346f48d3aaacdf2d3a1bb16e\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Resolved https://github.com/keras-team/keras.git to commit 8961e3f20f6d879ecb2ed2699a6fff14688b4129\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Installing build dependencies ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b|" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25h Getting requirements to build wheel ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25h Installing backend dependencies ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25hRequirement already satisfied: scikit-learn>=1.4.1.post1 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from scikeras[tensorflow]) (1.4.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow>=2.16.1 (from scikeras[tensorflow])\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow-2.16.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy>=1.19.5 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from scikit-learn>=1.4.1.post1->scikeras[tensorflow]) (1.26.4)\r\n", "Requirement already satisfied: scipy>=1.6.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from scikit-learn>=1.4.1.post1->scikeras[tensorflow]) (1.13.0)\r\n", "Requirement already satisfied: joblib>=1.2.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from scikit-learn>=1.4.1.post1->scikeras[tensorflow]) (1.4.0)\r\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from scikit-learn>=1.4.1.post1->scikeras[tensorflow]) (3.4.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py>=1.0.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (2.1.0)\r\n", "Collecting astunparse>=1.6.0 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Using cached astunparse-1.6.3-py2.py3-none-any.whl.metadata (4.4 kB)\r\n", "Collecting flatbuffers>=23.5.26 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading flatbuffers-24.3.25-py2.py3-none-any.whl.metadata (850 bytes)\r\n", "Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading gast-0.5.4-py3-none-any.whl.metadata (1.3 kB)\r\n", "Collecting google-pasta>=0.1.1 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading google_pasta-0.2.0-py3-none-any.whl.metadata (814 bytes)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: h5py>=3.10.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (3.10.0)\r\n", "Collecting libclang>=13.0.0 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl.metadata (5.2 kB)\r\n", "Requirement already satisfied: ml-dtypes~=0.3.1 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (0.3.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting opt-einsum>=2.3.2 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)\r\n", "Requirement already satisfied: packaging in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (24.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl.metadata (541 bytes)\r\n", "Requirement already satisfied: requests<3,>=2.21.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (2.31.0)\r\n", "Requirement already satisfied: setuptools in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (69.2.0)\r\n", "Requirement already satisfied: six>=1.12.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (1.16.0)\r\n", "Collecting termcolor>=1.1.0 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: typing-extensions>=3.6.6 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from tensorflow>=2.16.1->scikeras[tensorflow]) (4.11.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting wrapt>=1.11.0 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting grpcio<2.0,>=1.24.3 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorboard<2.17,>=2.16 (from tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading tensorboard-2.16.2-py3-none-any.whl.metadata (1.6 kB)\r\n", "Requirement already satisfied: rich in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from keras@ git+https://github.com/keras-team/keras.git@master->scikeras[tensorflow]) (13.7.1)\r\n", "Requirement already satisfied: namex in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from keras@ git+https://github.com/keras-team/keras.git@master->scikeras[tensorflow]) (0.0.7)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: optree in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from keras@ git+https://github.com/keras-team/keras.git@master->scikeras[tensorflow]) (0.11.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting wheel<1.0,>=0.23.0 (from astunparse>=1.6.0->tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Using cached wheel-0.43.0-py3-none-any.whl.metadata (2.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: charset-normalizer<4,>=2 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow>=2.16.1->scikeras[tensorflow]) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow>=2.16.1->scikeras[tensorflow]) (3.6)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow>=2.16.1->scikeras[tensorflow]) (2.2.1)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow>=2.16.1->scikeras[tensorflow]) (2024.2.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting markdown>=2.6.8 (from tensorboard<2.17,>=2.16->tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading Markdown-3.6-py3-none-any.whl.metadata (7.0 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.17,>=2.16->tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl.metadata (1.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting werkzeug>=1.0.1 (from tensorboard<2.17,>=2.16->tensorflow>=2.16.1->scikeras[tensorflow])\r\n", " Downloading werkzeug-3.0.2-py3-none-any.whl.metadata (4.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: markdown-it-py>=2.2.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from rich->keras@ git+https://github.com/keras-team/keras.git@master->scikeras[tensorflow]) (3.0.0)\r\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from rich->keras@ git+https://github.com/keras-team/keras.git@master->scikeras[tensorflow]) (2.17.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: mdurl~=0.1 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from markdown-it-py>=2.2.0->rich->keras@ git+https://github.com/keras-team/keras.git@master->scikeras[tensorflow]) (0.1.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: MarkupSafe>=2.1.1 in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow>=2.16.1->scikeras[tensorflow]) (2.1.5)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorflow-2.16.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.9 MB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/589.9 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.1/589.9 MB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:02:27\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.7/589.9 MB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:57\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/589.9 MB\u001b[0m \u001b[31m26.1 MB/s\u001b[0m eta \u001b[36m0:00:23\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.6/589.9 MB\u001b[0m \u001b[31m47.6 MB/s\u001b[0m eta \u001b[36m0:00:13\u001b[0m\r", "\u001b[2K \u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.5/589.9 MB\u001b[0m \u001b[31m130.2 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.6/589.9 MB\u001b[0m \u001b[31m161.3 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m22.2/589.9 MB\u001b[0m \u001b[31m141.4 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m27.2/589.9 MB\u001b[0m \u001b[31m134.7 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m32.5/589.9 MB\u001b[0m \u001b[31m150.6 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m37.9/589.9 MB\u001b[0m \u001b[31m156.8 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.0/589.9 MB\u001b[0m \u001b[31m137.5 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m47.0/589.9 MB\u001b[0m \u001b[31m132.8 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.7/589.9 MB\u001b[0m \u001b[31m140.7 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/589.9 MB\u001b[0m \u001b[31m139.2 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.7/589.9 MB\u001b[0m \u001b[31m140.6 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.9/589.9 MB\u001b[0m \u001b[31m108.3 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.7/589.9 MB\u001b[0m \u001b[31m108.8 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m74.0/589.9 MB\u001b[0m \u001b[31m144.7 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.7/589.9 MB\u001b[0m \u001b[31m120.4 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.1/589.9 MB\u001b[0m \u001b[31m111.5 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.6/589.9 MB\u001b[0m \u001b[31m120.4 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.4/589.9 MB\u001b[0m \u001b[31m118.2 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.6/589.9 MB\u001b[0m \u001b[31m128.5 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m100.3/589.9 MB\u001b[0m \u001b[31m159.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.0/589.9 MB\u001b[0m \u001b[31m155.8 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m108.0/589.9 MB\u001b[0m \u001b[31m116.1 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.8/589.9 MB\u001b[0m \u001b[31m106.3 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.0/589.9 MB\u001b[0m \u001b[31m95.0 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.7/589.9 MB\u001b[0m \u001b[31m112.3 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m123.3/589.9 MB\u001b[0m \u001b[31m109.1 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m126.9/589.9 MB\u001b[0m \u001b[31m101.8 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.5/589.9 MB\u001b[0m \u001b[31m101.3 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.0/589.9 MB\u001b[0m \u001b[31m101.5 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.4/589.9 MB\u001b[0m \u001b[31m101.6 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.7/589.9 MB\u001b[0m \u001b[31m97.0 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m145.0/589.9 MB\u001b[0m \u001b[31m104.9 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m149.6/589.9 MB\u001b[0m \u001b[31m123.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.0/589.9 MB\u001b[0m \u001b[31m124.7 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.6/589.9 MB\u001b[0m \u001b[31m116.2 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m161.5/589.9 MB\u001b[0m \u001b[31m114.4 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m165.9/589.9 MB\u001b[0m \u001b[31m114.9 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m168.9/589.9 MB\u001b[0m \u001b[31m107.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m172.8/589.9 MB\u001b[0m \u001b[31m108.7 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m175.6/589.9 MB\u001b[0m \u001b[31m93.0 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m178.0/589.9 MB\u001b[0m \u001b[31m86.1 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m180.2/589.9 MB\u001b[0m \u001b[31m80.1 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m182.6/589.9 MB\u001b[0m \u001b[31m71.7 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m187.2/589.9 MB\u001b[0m \u001b[31m81.0 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m192.4/589.9 MB\u001b[0m \u001b[31m129.9 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m197.7/589.9 MB\u001b[0m \u001b[31m154.0 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m203.3/589.9 MB\u001b[0m \u001b[31m152.3 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m208.7/589.9 MB\u001b[0m \u001b[31m152.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.9/589.9 MB\u001b[0m \u001b[31m127.6 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m216.2/589.9 MB\u001b[0m \u001b[31m118.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m220.4/589.9 MB\u001b[0m \u001b[31m107.1 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m223.9/589.9 MB\u001b[0m \u001b[31m106.1 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.7/589.9 MB\u001b[0m \u001b[31m110.3 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m231.3/589.9 MB\u001b[0m \u001b[31m104.9 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m234.2/589.9 MB\u001b[0m \u001b[31m98.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.8/589.9 MB\u001b[0m \u001b[31m89.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m240.8/589.9 MB\u001b[0m \u001b[31m89.2 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m243.4/589.9 MB\u001b[0m \u001b[31m86.5 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m245.9/589.9 MB\u001b[0m \u001b[31m82.0 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m249.6/589.9 MB\u001b[0m \u001b[31m86.1 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m252.8/589.9 MB\u001b[0m \u001b[31m88.4 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m256.4/589.9 MB\u001b[0m \u001b[31m101.9 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m259.2/589.9 MB\u001b[0m \u001b[31m90.9 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m262.6/589.9 MB\u001b[0m \u001b[31m91.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m266.6/589.9 MB\u001b[0m \u001b[31m95.4 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m271.1/589.9 MB\u001b[0m \u001b[31m114.6 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m275.4/589.9 MB\u001b[0m \u001b[31m124.5 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m278.8/589.9 MB\u001b[0m \u001b[31m111.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m284.0/589.9 MB\u001b[0m \u001b[31m125.1 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m287.2/589.9 MB\u001b[0m \u001b[31m121.8 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m292.7/589.9 MB\u001b[0m \u001b[31m127.3 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m297.6/589.9 MB\u001b[0m \u001b[31m152.3 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m303.0/589.9 MB\u001b[0m \u001b[31m151.0 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m308.5/589.9 MB\u001b[0m \u001b[31m156.3 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m313.7/589.9 MB\u001b[0m \u001b[31m154.5 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.7/589.9 MB\u001b[0m \u001b[31m129.1 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m320.9/589.9 MB\u001b[0m \u001b[31m110.8 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m324.7/589.9 MB\u001b[0m \u001b[31m101.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m329.4/589.9 MB\u001b[0m \u001b[31m115.1 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m333.1/589.9 MB\u001b[0m \u001b[31m115.1 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m337.5/589.9 MB\u001b[0m \u001b[31m122.1 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.1/589.9 MB\u001b[0m \u001b[31m116.3 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m345.8/589.9 MB\u001b[0m \u001b[31m120.5 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m350.1/589.9 MB\u001b[0m \u001b[31m123.4 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m354.3/589.9 MB\u001b[0m \u001b[31m121.7 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m359.0/589.9 MB\u001b[0m \u001b[31m125.8 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.7/589.9 MB\u001b[0m \u001b[31m130.1 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━\u001b[0m \u001b[32m369.3/589.9 MB\u001b[0m \u001b[31m150.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━\u001b[0m \u001b[32m373.3/589.9 MB\u001b[0m \u001b[31m138.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m379.1/589.9 MB\u001b[0m \u001b[31m138.1 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m384.6/589.9 MB\u001b[0m \u001b[31m164.3 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m388.5/589.9 MB\u001b[0m \u001b[31m134.5 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m392.3/589.9 MB\u001b[0m \u001b[31m120.0 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━\u001b[0m \u001b[32m396.3/589.9 MB\u001b[0m \u001b[31m109.6 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━\u001b[0m \u001b[32m400.1/589.9 MB\u001b[0m \u001b[31m108.6 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━\u001b[0m \u001b[32m404.4/589.9 MB\u001b[0m \u001b[31m114.0 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━\u001b[0m \u001b[32m407.3/589.9 MB\u001b[0m \u001b[31m103.3 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━\u001b[0m \u001b[32m411.1/589.9 MB\u001b[0m \u001b[31m103.8 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━\u001b[0m \u001b[32m414.9/589.9 MB\u001b[0m \u001b[31m100.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━\u001b[0m \u001b[32m418.7/589.9 MB\u001b[0m \u001b[31m114.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━\u001b[0m \u001b[32m422.6/589.9 MB\u001b[0m \u001b[31m110.3 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m427.2/589.9 MB\u001b[0m \u001b[31m116.5 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m431.1/589.9 MB\u001b[0m \u001b[31m118.5 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m435.0/589.9 MB\u001b[0m \u001b[31m112.5 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m438.8/589.9 MB\u001b[0m \u001b[31m108.8 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m442.4/589.9 MB\u001b[0m \u001b[31m107.4 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m446.0/589.9 MB\u001b[0m \u001b[31m104.7 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m448.3/589.9 MB\u001b[0m \u001b[31m90.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m451.9/589.9 MB\u001b[0m \u001b[31m90.7 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━\u001b[0m \u001b[32m456.4/589.9 MB\u001b[0m \u001b[31m100.8 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━\u001b[0m \u001b[32m462.0/589.9 MB\u001b[0m \u001b[31m139.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━\u001b[0m \u001b[32m467.6/589.9 MB\u001b[0m \u001b[31m160.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m471.7/589.9 MB\u001b[0m \u001b[31m145.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m475.9/589.9 MB\u001b[0m \u001b[31m123.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m480.5/589.9 MB\u001b[0m \u001b[31m115.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━\u001b[0m \u001b[32m484.5/589.9 MB\u001b[0m \u001b[31m117.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━\u001b[0m \u001b[32m488.5/589.9 MB\u001b[0m \u001b[31m111.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━\u001b[0m \u001b[32m492.8/589.9 MB\u001b[0m \u001b[31m118.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━\u001b[0m \u001b[32m496.2/589.9 MB\u001b[0m \u001b[31m112.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m499.9/589.9 MB\u001b[0m \u001b[31m105.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m503.6/589.9 MB\u001b[0m \u001b[31m109.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m506.8/589.9 MB\u001b[0m \u001b[31m101.9 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m510.2/589.9 MB\u001b[0m \u001b[31m100.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m514.2/589.9 MB\u001b[0m \u001b[31m103.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m517.3/589.9 MB\u001b[0m \u001b[31m101.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m520.8/589.9 MB\u001b[0m \u001b[31m100.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m524.8/589.9 MB\u001b[0m \u001b[31m103.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m528.6/589.9 MB\u001b[0m \u001b[31m110.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m106.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m106.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m529.2/589.9 MB\u001b[0m \u001b[31m56.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m530.3/589.9 MB\u001b[0m \u001b[31m24.0 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m535.4/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m536.3/589.9 MB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m537.6/589.9 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m542.9/589.9 MB\u001b[0m \u001b[31m27.9 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━\u001b[0m \u001b[32m547.7/589.9 MB\u001b[0m \u001b[31m137.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━\u001b[0m \u001b[32m551.9/589.9 MB\u001b[0m \u001b[31m125.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━\u001b[0m \u001b[32m554.1/589.9 MB\u001b[0m \u001b[31m121.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━\u001b[0m \u001b[32m557.6/589.9 MB\u001b[0m \u001b[31m93.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━\u001b[0m \u001b[32m561.8/589.9 MB\u001b[0m \u001b[31m91.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━\u001b[0m \u001b[32m566.3/589.9 MB\u001b[0m \u001b[31m112.1 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━\u001b[0m \u001b[32m570.8/589.9 MB\u001b[0m \u001b[31m132.1 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m575.0/589.9 MB\u001b[0m \u001b[31m126.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m579.4/589.9 MB\u001b[0m \u001b[31m123.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m584.1/589.9 MB\u001b[0m \u001b[31m129.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m587.4/589.9 MB\u001b[0m \u001b[31m109.9 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m589.9/589.9 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hUsing cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading gast-0.5.4-py3-none-any.whl (19 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/57.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.5/57.5 kB\u001b[0m \u001b[31m18.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hDownloading grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/5.5 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.2/5.5 MB\u001b[0m \u001b[31m98.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m5.5/5.5 MB\u001b[0m \u001b[31m94.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.5/5.5 MB\u001b[0m \u001b[31m67.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hDownloading libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl (24.5 MB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/24.5 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.2/24.5 MB\u001b[0m \u001b[31m95.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.1/24.5 MB\u001b[0m \u001b[31m87.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.7/24.5 MB\u001b[0m \u001b[31m92.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.9/24.5 MB\u001b[0m \u001b[31m94.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.1/24.5 MB\u001b[0m \u001b[31m85.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m18.2/24.5 MB\u001b[0m \u001b[31m83.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m21.5/24.5 MB\u001b[0m \u001b[31m82.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m24.5/24.5 MB\u001b[0m \u001b[31m89.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m24.5/24.5 MB\u001b[0m \u001b[31m88.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.5/24.5 MB\u001b[0m \u001b[31m55.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hUsing cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl (294 kB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/294.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m294.6/294.6 kB\u001b[0m \u001b[31m69.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hDownloading tensorboard-2.16.2-py3-none-any.whl (5.5 MB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/5.5 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/5.5 MB\u001b[0m \u001b[31m105.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m5.5/5.5 MB\u001b[0m \u001b[31m94.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.5/5.5 MB\u001b[0m \u001b[31m72.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hUsing cached termcolor-2.4.0-py3-none-any.whl (7.7 kB)\r\n", "Downloading wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87 kB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/87.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.3/87.3 kB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25h" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading Markdown-3.6-py3-none-any.whl (105 kB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/105.4 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.4/105.4 kB\u001b[0m \u001b[31m33.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hDownloading tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl (6.6 MB)\r\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/6.6 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/6.6 MB\u001b[0m \u001b[31m104.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m6.6/6.6 MB\u001b[0m \u001b[31m99.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.6/6.6 MB\u001b[0m \u001b[31m77.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", "\u001b[?25hUsing cached werkzeug-3.0.2-py3-none-any.whl (226 kB)\r\n", "Using cached wheel-0.43.0-py3-none-any.whl (65 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: libclang, flatbuffers, wrapt, wheel, werkzeug, termcolor, tensorboard-data-server, protobuf, opt-einsum, markdown, grpcio, google-pasta, gast, tensorboard, astunparse, tensorflow\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed astunparse-1.6.3 flatbuffers-24.3.25 gast-0.5.4 google-pasta-0.2.0 grpcio-1.62.1 libclang-18.1.1 markdown-3.6 opt-einsum-3.3.0 protobuf-4.25.3 tensorboard-2.16.2 tensorboard-data-server-0.7.2 tensorflow-2.16.1 termcolor-2.4.0 werkzeug-3.0.2 wheel-0.43.0 wrapt-1.16.0\r\n" ] } ], "source": [ "try:\n", " import scikeras\n", "except ImportError:\n", " !python -m pip install scikeras[tensorflow]" ] }, { "cell_type": "markdown", "id": "f7856155", "metadata": {}, "source": [ "Silence TensorFlow logging to keep output succinct." ] }, { "cell_type": "code", "execution_count": 2, "id": "d351aa5f", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:36:18.537803Z", "iopub.status.busy": "2024-04-10T00:36:18.537480Z", "iopub.status.idle": "2024-04-10T00:36:21.782726Z", "shell.execute_reply": "2024-04-10T00:36:21.782003Z" } }, "outputs": [], "source": [ "import warnings\n", "from tensorflow import get_logger\n", "get_logger().setLevel('ERROR')\n", "warnings.filterwarnings(\"ignore\", message=\"Setting the random state for TF\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "72cd59b4", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:36:21.786830Z", "iopub.status.busy": "2024-04-10T00:36:21.786114Z", "iopub.status.idle": "2024-04-10T00:36:23.030331Z", "shell.execute_reply": "2024-04-10T00:36:23.029648Z" } }, "outputs": [], "source": [ "import numpy as np\n", "from scikeras.wrappers import KerasClassifier, KerasRegressor\n", "import keras" ] }, { "cell_type": "markdown", "id": "1bef4ec7", "metadata": {}, "source": [ "## 2. Defining the Keras Model\n", "\n", "We borrow our MLPClassifier implementation from the [MLPClassifier notebook](https://colab.research.google.com/github/adriangb/scikeras/blob/master/notebooks/MLPClassifier_and_MLPRegressor.ipynb)." ] }, { "cell_type": "code", "execution_count": 4, "id": "de59cb38", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:36:23.033834Z", "iopub.status.busy": "2024-04-10T00:36:23.033250Z", "iopub.status.idle": "2024-04-10T00:36:23.038989Z", "shell.execute_reply": "2024-04-10T00:36:23.038419Z" } }, "outputs": [], "source": [ "from typing import Dict, Iterable, Any\n", "\n", "\n", "def get_clf_model(hidden_layer_sizes: Iterable[int], meta: Dict[str, Any], compile_kwargs: Dict[str, Any]):\n", " model = keras.Sequential()\n", " inp = keras.layers.Input(shape=(meta[\"n_features_in_\"],))\n", " model.add(inp)\n", " for hidden_layer_size in hidden_layer_sizes:\n", " layer = keras.layers.Dense(hidden_layer_size, activation=\"relu\")\n", " model.add(layer)\n", " if meta[\"target_type_\"] == \"binary\":\n", " n_output_units = 1\n", " output_activation = \"sigmoid\"\n", " loss = \"binary_crossentropy\"\n", " elif meta[\"target_type_\"] == \"multiclass\":\n", " n_output_units = meta[\"n_classes_\"]\n", " output_activation = \"softmax\"\n", " loss = \"sparse_categorical_crossentropy\"\n", " else:\n", " raise NotImplementedError(f\"Unsupported task type: {meta['target_type_']}\")\n", " out = keras.layers.Dense(n_output_units, activation=output_activation)\n", " model.add(out)\n", " model.compile(loss=loss, optimizer=compile_kwargs[\"optimizer\"])\n", " return model" ] }, { "cell_type": "markdown", "id": "e4f09ee3", "metadata": {}, "source": [ "Next we wrap this Keras model with SciKeras" ] }, { "cell_type": "code", "execution_count": 5, "id": "676903ec", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:36:23.041803Z", "iopub.status.busy": "2024-04-10T00:36:23.041476Z", "iopub.status.idle": "2024-04-10T00:36:23.044491Z", "shell.execute_reply": "2024-04-10T00:36:23.043941Z" } }, "outputs": [], "source": [ "clf = KerasClassifier(\n", " model=get_clf_model,\n", " hidden_layer_sizes=(100, ),\n", " optimizer=\"adam\",\n", " optimizer__learning_rate=0.001,\n", " verbose=0,\n", " random_state=0,\n", ")" ] }, { "cell_type": "markdown", "id": "7eae15b7", "metadata": {}, "source": [ "### 2.1 Building a boosting ensemble\n", "\n", "Because SciKeras estimators are fully compliant with the Scikit-Learn API, we can make use of Scikit-Learn's built in utilities. In particular example, we will use `AdaBoostClassifier` from `sklearn.ensemble.AdaBoostClassifier`, but the process is the same for most Scikit-Learn meta-estimators.\n" ] }, { "cell_type": "code", "execution_count": 6, "id": "57a4df59", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:36:23.046886Z", "iopub.status.busy": "2024-04-10T00:36:23.046565Z", "iopub.status.idle": "2024-04-10T00:36:23.379212Z", "shell.execute_reply": "2024-04-10T00:36:23.378596Z" } }, "outputs": [], "source": [ "from sklearn.ensemble import AdaBoostClassifier\n", "\n", "\n", "adaboost = AdaBoostClassifier(estimator=clf, random_state=0)" ] }, { "cell_type": "markdown", "id": "480d2c9c", "metadata": {}, "source": [ "## 3. Testing with a toy dataset\n", "\n", "Before continouing, we will run a small test to make sure we get somewhat reasonable results.\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "dddabffd", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:36:23.382574Z", "iopub.status.busy": "2024-04-10T00:36:23.381803Z", "iopub.status.idle": "2024-04-10T00:37:22.822539Z", "shell.execute_reply": "2024-04-10T00:37:22.821753Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages/sklearn/ensemble/_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and will be removed in 1.6. Use the SAMME algorithm to circumvent this warning.\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Single score: 0.52\n", "AdaBoost score: 0.87\n" ] } ], "source": [ "from sklearn.datasets import make_moons\n", "\n", "\n", "X, y = make_moons()\n", "\n", "single_score = clf.fit(X, y).score(X, y)\n", "\n", "adaboost_score = adaboost.fit(X, y).score(X, y)\n", "\n", "print(f\"Single score: {single_score:.2f}\")\n", "print(f\"AdaBoost score: {adaboost_score:.2f}\")" ] }, { "cell_type": "markdown", "id": "796ee73d", "metadata": {}, "source": [ "We see that the score for the AdaBoost classifier is slightly higher than that of an individual MLPRegressor instance. We can explore the individual classifiers, and see that each one is composed of a Keras Model with it's own individual weights.\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "d7305f17", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:37:22.825822Z", "iopub.status.busy": "2024-04-10T00:37:22.825056Z", "iopub.status.idle": "2024-04-10T00:37:22.835636Z", "shell.execute_reply": "2024-04-10T00:37:22.834972Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.00940047 0.04685066 0.08672355 -0.20479415 0.11128581]\n", "[ 0.23014529 0.20148858 0.21454832 0.0320623 -0.09929957]\n" ] } ], "source": [ "print(adaboost.estimators_[0].model_.get_weights()[0][0, :5]) # first sub-estimator\n", "print(adaboost.estimators_[1].model_.get_weights()[0][0, :5]) # second sub-estimator" ] }, { "cell_type": "markdown", "id": "0ebd0774", "metadata": {}, "source": [ "## 4. Bagging ensemble\n", "\n", "For comparison, we run the same test with an ensemble built using `sklearn.ensemble.BaggingClassifier`." ] }, { "cell_type": "code", "execution_count": 9, "id": "3fad79bd", "metadata": { "execution": { "iopub.execute_input": "2024-04-10T00:37:22.838131Z", "iopub.status.busy": "2024-04-10T00:37:22.837842Z", "iopub.status.idle": "2024-04-10T00:37:32.342781Z", "shell.execute_reply": "2024-04-10T00:37:32.341890Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Bagging score: 0.73\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:5 out of the last 9 calls to .one_step_on_data_distributed at 0x7f63f8a731a0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", "WARNING:tensorflow:6 out of the last 12 calls to .one_step_on_data_distributed at 0x7f63f8a731a0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", "WARNING:tensorflow:5 out of the last 9 calls to .one_step_on_data_distributed at 0x7ff52c7a59e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", "WARNING:tensorflow:6 out of the last 12 calls to .one_step_on_data_distributed at 0x7ff52c7a59e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" ] } ], "source": [ "from sklearn.ensemble import BaggingClassifier\n", "\n", "\n", "bagging = BaggingClassifier(estimator=clf, random_state=0, n_jobs=-1)\n", "\n", "bagging_score = bagging.fit(X, y).score(X, y)\n", "\n", "print(f\"Bagging score: {bagging_score:.2f}\")" ] } ], "metadata": { "jupytext": { "formats": "ipynb,md" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 5 }