{ "cells": [ { "cell_type": "raw", "id": "ceffa379", "metadata": {}, "source": [ "Run in Google Colab" ] }, { "cell_type": "markdown", "id": "8e47dc49", "metadata": {}, "source": [ "# Sparse Inputs" ] }, { "cell_type": "markdown", "id": "58d635da", "metadata": {}, "source": [ "SciKeras supports sparse inputs (`X`/features).\n", "You don't have to do anything special for this to work, you can just pass a sparse matrix to `fit()`.\n", "\n", "In this notebook, we'll demonstrate how this works and compare memory consumption of sparse inputs to dense inputs." ] }, { "cell_type": "markdown", "id": "f97eb857", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "d12f9961", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:42.583896Z", "iopub.status.busy": "2024-04-11T21:58:42.583620Z", "iopub.status.idle": "2024-04-11T21:58:45.757504Z", "shell.execute_reply": "2024-04-11T21:58:45.756881Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting memory_profiler\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading memory_profiler-0.61.0-py3-none-any.whl.metadata (20 kB)\r\n", "Requirement already satisfied: psutil in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from memory_profiler) (5.9.8)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading memory_profiler-0.61.0-py3-none-any.whl (31 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: memory_profiler\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed memory_profiler-0.61.0\r\n" ] } ], "source": [ "!pip install memory_profiler\n", "%load_ext memory_profiler" ] }, { "cell_type": "code", "execution_count": 2, "id": "be092c8b", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:45.761014Z", "iopub.status.busy": "2024-04-11T21:58:45.760494Z", "iopub.status.idle": "2024-04-11T21:58:48.056071Z", "shell.execute_reply": "2024-04-11T21:58:48.055412Z" } }, "outputs": [], "source": [ "import warnings\n", "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n", "from tensorflow import get_logger\n", "get_logger().setLevel('ERROR')\n", "warnings.filterwarnings(\"ignore\", message=\"Setting the random state for TF\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "323f44a1", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:48.059324Z", "iopub.status.busy": "2024-04-11T21:58:48.058636Z", "iopub.status.idle": "2024-04-11T21:58:48.064794Z", "shell.execute_reply": "2024-04-11T21:58:48.064205Z" } }, "outputs": [], "source": [ "try:\n", " import scikeras\n", "except ImportError:\n", " !python -m pip install scikeras" ] }, { "cell_type": "code", "execution_count": 4, "id": "256e285b", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:48.067507Z", "iopub.status.busy": "2024-04-11T21:58:48.066985Z", "iopub.status.idle": "2024-04-11T21:58:48.397555Z", "shell.execute_reply": "2024-04-11T21:58:48.396879Z" } }, "outputs": [], "source": [ "import scipy\n", "import numpy as np\n", "from scikeras.wrappers import KerasRegressor\n", "from sklearn.preprocessing import OneHotEncoder\n", "from sklearn.pipeline import Pipeline\n", "import keras" ] }, { "cell_type": "markdown", "id": "1267f2be", "metadata": {}, "source": [ "## Data\n", "\n", "The dataset we'll be using is designed to demostrate a worst-case/best-case scenario for dense and sparse input features respectively.\n", "It consists of a single categorical feature with equal number of categories as rows.\n", "This means the one-hot encoded representation will require as many columns as it does rows, making it very ineffienct to store as a dense matrix but very efficient to store as a sparse matrix." ] }, { "cell_type": "code", "execution_count": 5, "id": "e25cb1ce", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:48.401178Z", "iopub.status.busy": "2024-04-11T21:58:48.400792Z", "iopub.status.idle": "2024-04-11T21:58:48.404643Z", "shell.execute_reply": "2024-04-11T21:58:48.404067Z" } }, "outputs": [], "source": [ "N_SAMPLES = 20_000 # hand tuned to be ~4GB peak\n", "\n", "X = np.arange(0, N_SAMPLES).reshape(-1, 1)\n", "y = np.random.uniform(0, 1, size=(X.shape[0],))" ] }, { "cell_type": "markdown", "id": "7257b725", "metadata": {}, "source": [ "## Model\n", "\n", "The model here is nothing special, just a basic multilayer perceptron with one hidden layer." ] }, { "cell_type": "code", "execution_count": 6, "id": "8a3a2429", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:48.407383Z", "iopub.status.busy": "2024-04-11T21:58:48.407184Z", "iopub.status.idle": "2024-04-11T21:58:48.411987Z", "shell.execute_reply": "2024-04-11T21:58:48.411387Z" } }, "outputs": [], "source": [ "def get_clf(meta) -> keras.Model:\n", " n_features_in_ = meta[\"n_features_in_\"]\n", " model = keras.models.Sequential()\n", " model.add(keras.layers.Input(shape=(n_features_in_,)))\n", " # a single hidden layer\n", " model.add(keras.layers.Dense(100, activation=\"relu\"))\n", " model.add(keras.layers.Dense(1))\n", " return model" ] }, { "cell_type": "markdown", "id": "f76cf14d", "metadata": {}, "source": [ "## Pipelines\n", "\n", "Here is where it gets interesting.\n", "We make two Scikit-Learn pipelines that use `OneHotEncoder`: one that uses `sparse_output=False` to force a dense matrix as the output and another that uses `sparse_output=True` (the default)." ] }, { "cell_type": "code", "execution_count": 7, "id": "5c69ce74", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:48.414950Z", "iopub.status.busy": "2024-04-11T21:58:48.414706Z", "iopub.status.idle": "2024-04-11T21:58:48.418415Z", "shell.execute_reply": "2024-04-11T21:58:48.417793Z" } }, "outputs": [], "source": [ "dense_pipeline = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=False)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")\n", "\n", "sparse_pipeline = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=True)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")" ] }, { "cell_type": "markdown", "id": "fead0bc5", "metadata": {}, "source": [ "## Benchmark\n", "\n", "Our benchmark will be to just train each one of these pipelines and measure peak memory consumption." ] }, { "cell_type": "code", "execution_count": 8, "id": "4b10ad92", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:58:48.421179Z", "iopub.status.busy": "2024-04-11T21:58:48.420984Z", "iopub.status.idle": "2024-04-11T21:59:15.978942Z", "shell.execute_reply": "2024-04-11T21:59:15.978216Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 5186.09 MiB, increment: 4662.82 MiB\n" ] } ], "source": [ "%memit dense_pipeline.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 9, "id": "78cd1d40", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:59:15.981564Z", "iopub.status.busy": "2024-04-11T21:59:15.981136Z", "iopub.status.idle": "2024-04-11T21:59:35.154753Z", "shell.execute_reply": "2024-04-11T21:59:35.154042Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 994.40 MiB, increment: 33.29 MiB\n" ] } ], "source": [ "%memit sparse_pipeline.fit(X, y)" ] }, { "cell_type": "markdown", "id": "3ea6295c", "metadata": {}, "source": [ "You should see at least 100x more memory consumption **increment** in the dense pipeline." ] }, { "cell_type": "markdown", "id": "3d49dbee", "metadata": {}, "source": [ "### Runtime\n", "\n", "Using sparse inputs can have a drastic impact on memory usage, but it often (not always) hurts overall runtime." ] }, { "cell_type": "code", "execution_count": 10, "id": "d1a0b252", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T21:59:35.157724Z", "iopub.status.busy": "2024-04-11T21:59:35.157165Z", "iopub.status.idle": "2024-04-11T22:04:03.156544Z", "shell.execute_reply": "2024-04-11T22:04:03.156023Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "33.2 s ± 8.46 s per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%timeit dense_pipeline.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 11, "id": "7ef8be48", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:04:03.160081Z", "iopub.status.busy": "2024-04-11T22:04:03.158545Z", "iopub.status.idle": "2024-04-11T22:05:36.270751Z", "shell.execute_reply": "2024-04-11T22:05:36.270145Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "11.6 s ± 824 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%timeit sparse_pipeline.fit(X, y)" ] }, { "cell_type": "markdown", "id": "458d560c", "metadata": {}, "source": [ "## Tensorflow Datasets\n", "\n", "Tensorflow provides a whole suite of functionality around the [Dataset].\n", "Datasets are lazily evaluated, can be sparse and minimize the transformations required to feed data into the model.\n", "They are _a lot_ more performant and efficient at scale than using numpy datastructures, even sparse ones.\n", "\n", "SciKeras does not (and cannot) support Datasets directly because Scikit-Learn itself does not support them and SciKeras' outwards API is Scikit-Learn's API.\n", "You may want to explore breaking out of SciKeras and just using TensorFlow/Keras directly to see if Datasets can have a large impact for your use case.\n", "\n", "[Dataset]: https://www.tensorflow.org/api_docs/python/tf/data/Dataset" ] }, { "cell_type": "markdown", "id": "8a553fc9", "metadata": {}, "source": [ "## Bonus: dtypes\n", "\n", "You might be able to save even more memory by changing the output dtype of `OneHotEncoder`." ] }, { "cell_type": "code", "execution_count": 12, "id": "0d3ebf94", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:05:36.273141Z", "iopub.status.busy": "2024-04-11T22:05:36.272761Z", "iopub.status.idle": "2024-04-11T22:05:36.275913Z", "shell.execute_reply": "2024-04-11T22:05:36.275413Z" } }, "outputs": [], "source": [ "sparse_pipline_uint8 = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=True, dtype=np.uint8)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "id": "d9edf96c", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:05:36.277981Z", "iopub.status.busy": "2024-04-11T22:05:36.277639Z", "iopub.status.idle": "2024-04-11T22:05:47.758797Z", "shell.execute_reply": "2024-04-11T22:05:47.758122Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 1101.04 MiB, increment: 12.35 MiB\n" ] } ], "source": [ "%memit sparse_pipline_uint8.fit(X, y)" ] } ], "metadata": { "jupytext": { "formats": "ipynb,md" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 5 }