{ "cells": [ { "cell_type": "raw", "id": "f7e954ff", "metadata": {}, "source": [ "Run in Google Colab" ] }, { "cell_type": "markdown", "id": "8de04154", "metadata": {}, "source": [ "# Sparse Inputs" ] }, { "cell_type": "markdown", "id": "9309c95f", "metadata": {}, "source": [ "SciKeras supports sparse inputs (`X`/features).\n", "You don't have to do anything special for this to work, you can just pass a sparse matrix to `fit()`.\n", "\n", "In this notebook, we'll demonstrate how this works and compare memory consumption of sparse inputs to dense inputs." ] }, { "cell_type": "markdown", "id": "c5c52384", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "8402edeb", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:06.989751Z", "iopub.status.busy": "2024-12-12T21:42:06.989428Z", "iopub.status.idle": "2024-12-12T21:42:08.632601Z", "shell.execute_reply": "2024-12-12T21:42:08.631787Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting memory_profiler\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading memory_profiler-0.61.0-py3-none-any.whl.metadata (20 kB)\r\n", "Requirement already satisfied: psutil in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from memory_profiler) (6.1.0)\r\n", "Downloading memory_profiler-0.61.0-py3-none-any.whl (31 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: memory_profiler\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed memory_profiler-0.61.0\r\n" ] } ], "source": [ "!pip install memory_profiler\n", "%load_ext memory_profiler" ] }, { "cell_type": "code", "execution_count": 2, "id": "c4d284d1", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:08.635714Z", "iopub.status.busy": "2024-12-12T21:42:08.635170Z", "iopub.status.idle": "2024-12-12T21:42:11.898831Z", "shell.execute_reply": "2024-12-12T21:42:11.898080Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1734039728.905851 3633 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1734039728.910544 3633 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] } ], "source": [ "import warnings\n", "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n", "from tensorflow import get_logger\n", "get_logger().setLevel('ERROR')\n", "warnings.filterwarnings(\"ignore\", message=\"Setting the random state for TF\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "de4a87aa", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:11.902305Z", "iopub.status.busy": "2024-12-12T21:42:11.901571Z", "iopub.status.idle": "2024-12-12T21:42:11.909446Z", "shell.execute_reply": "2024-12-12T21:42:11.908549Z" } }, "outputs": [], "source": [ "try:\n", " import scikeras\n", "except ImportError:\n", " !python -m pip install scikeras" ] }, { "cell_type": "code", "execution_count": 4, "id": "08f8f3dc", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:11.912423Z", "iopub.status.busy": "2024-12-12T21:42:11.911861Z", "iopub.status.idle": "2024-12-12T21:42:12.416644Z", "shell.execute_reply": "2024-12-12T21:42:12.415734Z" } }, "outputs": [], "source": [ "import scipy\n", "import numpy as np\n", "from scikeras.wrappers import KerasRegressor\n", "from sklearn.preprocessing import OneHotEncoder\n", "from sklearn.pipeline import Pipeline\n", "import keras" ] }, { "cell_type": "markdown", "id": "bd3661d5", "metadata": {}, "source": [ "## Data\n", "\n", "The dataset we'll be using is designed to demostrate a worst-case/best-case scenario for dense and sparse input features respectively.\n", "It consists of a single categorical feature with equal number of categories as rows.\n", "This means the one-hot encoded representation will require as many columns as it does rows, making it very ineffienct to store as a dense matrix but very efficient to store as a sparse matrix." ] }, { "cell_type": "code", "execution_count": 5, "id": "f4004157", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:12.420260Z", "iopub.status.busy": "2024-12-12T21:42:12.419464Z", "iopub.status.idle": "2024-12-12T21:42:12.424606Z", "shell.execute_reply": "2024-12-12T21:42:12.423766Z" } }, "outputs": [], "source": [ "N_SAMPLES = 20_000 # hand tuned to be ~4GB peak\n", "\n", "X = np.arange(0, N_SAMPLES).reshape(-1, 1)\n", "y = np.random.uniform(0, 1, size=(X.shape[0],))" ] }, { "cell_type": "markdown", "id": "ee2ca756", "metadata": {}, "source": [ "## Model\n", "\n", "The model here is nothing special, just a basic multilayer perceptron with one hidden layer." ] }, { "cell_type": "code", "execution_count": 6, "id": "a0333ced", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:12.427123Z", "iopub.status.busy": "2024-12-12T21:42:12.426905Z", "iopub.status.idle": "2024-12-12T21:42:12.431507Z", "shell.execute_reply": "2024-12-12T21:42:12.430750Z" } }, "outputs": [], "source": [ "def get_clf(meta) -> keras.Model:\n", " n_features_in_ = meta[\"n_features_in_\"]\n", " model = keras.models.Sequential()\n", " model.add(keras.layers.Input(shape=(n_features_in_,)))\n", " # a single hidden layer\n", " model.add(keras.layers.Dense(100, activation=\"relu\"))\n", " model.add(keras.layers.Dense(1))\n", " return model" ] }, { "cell_type": "markdown", "id": "a8343932", "metadata": {}, "source": [ "## Pipelines\n", "\n", "Here is where it gets interesting.\n", "We make two Scikit-Learn pipelines that use `OneHotEncoder`: one that uses `sparse_output=False` to force a dense matrix as the output and another that uses `sparse_output=True` (the default)." ] }, { "cell_type": "code", "execution_count": 7, "id": "c78b9d79", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:12.434130Z", "iopub.status.busy": "2024-12-12T21:42:12.433833Z", "iopub.status.idle": "2024-12-12T21:42:12.438761Z", "shell.execute_reply": "2024-12-12T21:42:12.437851Z" } }, "outputs": [], "source": [ "dense_pipeline = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=False)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")\n", "\n", "sparse_pipeline = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=True)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")" ] }, { "cell_type": "markdown", "id": "965196b1", "metadata": {}, "source": [ "## Benchmark\n", "\n", "Our benchmark will be to just train each one of these pipelines and measure peak memory consumption." ] }, { "cell_type": "code", "execution_count": 8, "id": "73c7fd35", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:12.441900Z", "iopub.status.busy": "2024-12-12T21:42:12.441230Z", "iopub.status.idle": "2024-12-12T21:42:41.548574Z", "shell.execute_reply": "2024-12-12T21:42:41.547891Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 5082.25 MiB, increment: 4528.79 MiB\n" ] } ], "source": [ "%memit dense_pipeline.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 9, "id": "39f57be3", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:42:41.550574Z", "iopub.status.busy": "2024-12-12T21:42:41.550358Z", "iopub.status.idle": "2024-12-12T21:43:14.112006Z", "shell.execute_reply": "2024-12-12T21:43:14.111111Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 1125.83 MiB, increment: 54.78 MiB\n" ] } ], "source": [ "%memit sparse_pipeline.fit(X, y)" ] }, { "cell_type": "markdown", "id": "672955b4", "metadata": {}, "source": [ "You should see at least 100x more memory consumption **increment** in the dense pipeline." ] }, { "cell_type": "markdown", "id": "eaed13ea", "metadata": {}, "source": [ "### Runtime\n", "\n", "Using sparse inputs can have a drastic impact on memory usage, but it often (not always) hurts overall runtime." ] }, { "cell_type": "code", "execution_count": 10, "id": "1835a31c", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:43:14.116475Z", "iopub.status.busy": "2024-12-12T21:43:14.115911Z", "iopub.status.idle": "2024-12-12T21:47:33.818792Z", "shell.execute_reply": "2024-12-12T21:47:33.818028Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "31.9 s ± 5.66 s per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%timeit dense_pipeline.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 11, "id": "6df623f5", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:47:33.821494Z", "iopub.status.busy": "2024-12-12T21:47:33.821194Z", "iopub.status.idle": "2024-12-12T21:50:32.885942Z", "shell.execute_reply": "2024-12-12T21:50:32.885060Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "21 s ± 1.16 s per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%timeit sparse_pipeline.fit(X, y)" ] }, { "cell_type": "markdown", "id": "becc3ee1", "metadata": {}, "source": [ "## Tensorflow Datasets\n", "\n", "Tensorflow provides a whole suite of functionality around the [Dataset].\n", "Datasets are lazily evaluated, can be sparse and minimize the transformations required to feed data into the model.\n", "They are _a lot_ more performant and efficient at scale than using numpy datastructures, even sparse ones.\n", "\n", "SciKeras does not (and cannot) support Datasets directly because Scikit-Learn itself does not support them and SciKeras' outwards API is Scikit-Learn's API.\n", "You may want to explore breaking out of SciKeras and just using TensorFlow/Keras directly to see if Datasets can have a large impact for your use case.\n", "\n", "[Dataset]: https://www.tensorflow.org/api_docs/python/tf/data/Dataset" ] }, { "cell_type": "markdown", "id": "f55dff39", "metadata": {}, "source": [ "## Bonus: dtypes\n", "\n", "You might be able to save even more memory by changing the output dtype of `OneHotEncoder`." ] }, { "cell_type": "code", "execution_count": 12, "id": "98e05550", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:50:32.888002Z", "iopub.status.busy": "2024-12-12T21:50:32.887557Z", "iopub.status.idle": "2024-12-12T21:50:32.890652Z", "shell.execute_reply": "2024-12-12T21:50:32.890210Z" } }, "outputs": [], "source": [ "sparse_pipline_uint8 = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=True, dtype=np.uint8)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "id": "1a3ee26c", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T21:50:32.892454Z", "iopub.status.busy": "2024-12-12T21:50:32.892098Z", "iopub.status.idle": "2024-12-12T21:50:55.974868Z", "shell.execute_reply": "2024-12-12T21:50:55.974253Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 1317.72 MiB, increment: 108.48 MiB\n" ] } ], "source": [ "%memit sparse_pipline_uint8.fit(X, y)" ] } ], "metadata": { "jupytext": { "formats": "ipynb,md" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }