{ "cells": [ { "cell_type": "raw", "id": "29782901", "metadata": {}, "source": [ "Run in Google Colab" ] }, { "cell_type": "markdown", "id": "c6a4d152", "metadata": {}, "source": [ "# Sparse Inputs" ] }, { "cell_type": "markdown", "id": "dc95ac35", "metadata": {}, "source": [ "SciKeras supports sparse inputs (`X`/features).\n", "You don't have to do anything special for this to work, you can just pass a sparse matrix to `fit()`.\n", "\n", "In this notebook, we'll demonstrate how this works and compare memory consumption of sparse inputs to dense inputs." ] }, { "cell_type": "markdown", "id": "0b1c8428", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "e08b1768", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:19.252106Z", "iopub.status.busy": "2024-04-11T22:26:19.251823Z", "iopub.status.idle": "2024-04-11T22:26:22.018507Z", "shell.execute_reply": "2024-04-11T22:26:22.017817Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting memory_profiler\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading memory_profiler-0.61.0-py3-none-any.whl.metadata (20 kB)\r\n", "Requirement already satisfied: psutil in /home/runner/work/scikeras/scikeras/.venv/lib/python3.12/site-packages (from memory_profiler) (5.9.8)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading memory_profiler-0.61.0-py3-none-any.whl (31 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: memory_profiler\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed memory_profiler-0.61.0\r\n" ] } ], "source": [ "!pip install memory_profiler\n", "%load_ext memory_profiler" ] }, { "cell_type": "code", "execution_count": 2, "id": "59cbf934", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:22.021790Z", "iopub.status.busy": "2024-04-11T22:26:22.021580Z", "iopub.status.idle": "2024-04-11T22:26:24.177391Z", "shell.execute_reply": "2024-04-11T22:26:24.176808Z" } }, "outputs": [], "source": [ "import warnings\n", "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n", "from tensorflow import get_logger\n", "get_logger().setLevel('ERROR')\n", "warnings.filterwarnings(\"ignore\", message=\"Setting the random state for TF\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "be38bfbd", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:24.180546Z", "iopub.status.busy": "2024-04-11T22:26:24.179916Z", "iopub.status.idle": "2024-04-11T22:26:24.185374Z", "shell.execute_reply": "2024-04-11T22:26:24.184866Z" } }, "outputs": [], "source": [ "try:\n", " import scikeras\n", "except ImportError:\n", " !python -m pip install scikeras" ] }, { "cell_type": "code", "execution_count": 4, "id": "530ddaa1", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:24.187561Z", "iopub.status.busy": "2024-04-11T22:26:24.187363Z", "iopub.status.idle": "2024-04-11T22:26:24.524668Z", "shell.execute_reply": "2024-04-11T22:26:24.524022Z" } }, "outputs": [], "source": [ "import scipy\n", "import numpy as np\n", "from scikeras.wrappers import KerasRegressor\n", "from sklearn.preprocessing import OneHotEncoder\n", "from sklearn.pipeline import Pipeline\n", "import keras" ] }, { "cell_type": "markdown", "id": "ba9f7ddd", "metadata": {}, "source": [ "## Data\n", "\n", "The dataset we'll be using is designed to demostrate a worst-case/best-case scenario for dense and sparse input features respectively.\n", "It consists of a single categorical feature with equal number of categories as rows.\n", "This means the one-hot encoded representation will require as many columns as it does rows, making it very ineffienct to store as a dense matrix but very efficient to store as a sparse matrix." ] }, { "cell_type": "code", "execution_count": 5, "id": "dd25b343", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:24.527891Z", "iopub.status.busy": "2024-04-11T22:26:24.527182Z", "iopub.status.idle": "2024-04-11T22:26:24.531434Z", "shell.execute_reply": "2024-04-11T22:26:24.530918Z" } }, "outputs": [], "source": [ "N_SAMPLES = 20_000 # hand tuned to be ~4GB peak\n", "\n", "X = np.arange(0, N_SAMPLES).reshape(-1, 1)\n", "y = np.random.uniform(0, 1, size=(X.shape[0],))" ] }, { "cell_type": "markdown", "id": "704084ec", "metadata": {}, "source": [ "## Model\n", "\n", "The model here is nothing special, just a basic multilayer perceptron with one hidden layer." ] }, { "cell_type": "code", "execution_count": 6, "id": "2e56e3e3", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:24.533990Z", "iopub.status.busy": "2024-04-11T22:26:24.533509Z", "iopub.status.idle": "2024-04-11T22:26:24.539515Z", "shell.execute_reply": "2024-04-11T22:26:24.539009Z" } }, "outputs": [], "source": [ "def get_clf(meta) -> keras.Model:\n", " n_features_in_ = meta[\"n_features_in_\"]\n", " model = keras.models.Sequential()\n", " model.add(keras.layers.Input(shape=(n_features_in_,)))\n", " # a single hidden layer\n", " model.add(keras.layers.Dense(100, activation=\"relu\"))\n", " model.add(keras.layers.Dense(1))\n", " return model" ] }, { "cell_type": "markdown", "id": "309aa802", "metadata": {}, "source": [ "## Pipelines\n", "\n", "Here is where it gets interesting.\n", "We make two Scikit-Learn pipelines that use `OneHotEncoder`: one that uses `sparse_output=False` to force a dense matrix as the output and another that uses `sparse_output=True` (the default)." ] }, { "cell_type": "code", "execution_count": 7, "id": "0fe26fe5", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:24.542283Z", "iopub.status.busy": "2024-04-11T22:26:24.541733Z", "iopub.status.idle": "2024-04-11T22:26:24.545550Z", "shell.execute_reply": "2024-04-11T22:26:24.545039Z" } }, "outputs": [], "source": [ "dense_pipeline = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=False)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")\n", "\n", "sparse_pipeline = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=True)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")" ] }, { "cell_type": "markdown", "id": "ab925a72", "metadata": {}, "source": [ "## Benchmark\n", "\n", "Our benchmark will be to just train each one of these pipelines and measure peak memory consumption." ] }, { "cell_type": "code", "execution_count": 8, "id": "4a269e5d", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:26:24.547644Z", "iopub.status.busy": "2024-04-11T22:26:24.547449Z", "iopub.status.idle": "2024-04-11T22:27:02.265394Z", "shell.execute_reply": "2024-04-11T22:27:02.264572Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 5175.21 MiB, increment: 4650.21 MiB\n" ] } ], "source": [ "%memit dense_pipeline.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 9, "id": "c26e298e", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:27:02.269446Z", "iopub.status.busy": "2024-04-11T22:27:02.268786Z", "iopub.status.idle": "2024-04-11T22:27:16.093344Z", "shell.execute_reply": "2024-04-11T22:27:16.092618Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 1001.99 MiB, increment: 40.09 MiB\n" ] } ], "source": [ "%memit sparse_pipeline.fit(X, y)" ] }, { "cell_type": "markdown", "id": "dc22deaf", "metadata": {}, "source": [ "You should see at least 100x more memory consumption **increment** in the dense pipeline." ] }, { "cell_type": "markdown", "id": "2ffc2952", "metadata": {}, "source": [ "### Runtime\n", "\n", "Using sparse inputs can have a drastic impact on memory usage, but it often (not always) hurts overall runtime." ] }, { "cell_type": "code", "execution_count": 10, "id": "26215134", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:27:16.096252Z", "iopub.status.busy": "2024-04-11T22:27:16.095736Z", "iopub.status.idle": "2024-04-11T22:31:49.957522Z", "shell.execute_reply": "2024-04-11T22:31:49.956928Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32.8 s ± 9.49 s per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%timeit dense_pipeline.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 11, "id": "2de9f5f0", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:31:49.960116Z", "iopub.status.busy": "2024-04-11T22:31:49.959636Z", "iopub.status.idle": "2024-04-11T22:33:26.244465Z", "shell.execute_reply": "2024-04-11T22:33:26.243845Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12.1 s ± 717 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%timeit sparse_pipeline.fit(X, y)" ] }, { "cell_type": "markdown", "id": "6f461be3", "metadata": {}, "source": [ "## Tensorflow Datasets\n", "\n", "Tensorflow provides a whole suite of functionality around the [Dataset].\n", "Datasets are lazily evaluated, can be sparse and minimize the transformations required to feed data into the model.\n", "They are _a lot_ more performant and efficient at scale than using numpy datastructures, even sparse ones.\n", "\n", "SciKeras does not (and cannot) support Datasets directly because Scikit-Learn itself does not support them and SciKeras' outwards API is Scikit-Learn's API.\n", "You may want to explore breaking out of SciKeras and just using TensorFlow/Keras directly to see if Datasets can have a large impact for your use case.\n", "\n", "[Dataset]: https://www.tensorflow.org/api_docs/python/tf/data/Dataset" ] }, { "cell_type": "markdown", "id": "b47d7df0", "metadata": {}, "source": [ "## Bonus: dtypes\n", "\n", "You might be able to save even more memory by changing the output dtype of `OneHotEncoder`." ] }, { "cell_type": "code", "execution_count": 12, "id": "f87dc092", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:33:26.247319Z", "iopub.status.busy": "2024-04-11T22:33:26.246825Z", "iopub.status.idle": "2024-04-11T22:33:26.250177Z", "shell.execute_reply": "2024-04-11T22:33:26.249610Z" } }, "outputs": [], "source": [ "sparse_pipline_uint8 = Pipeline(\n", " [\n", " (\"encoder\", OneHotEncoder(sparse_output=True, dtype=np.uint8)),\n", " (\"model\", KerasRegressor(get_clf, loss=\"mse\", epochs=5, verbose=False))\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "id": "16889621", "metadata": { "execution": { "iopub.execute_input": "2024-04-11T22:33:26.252417Z", "iopub.status.busy": "2024-04-11T22:33:26.252052Z", "iopub.status.idle": "2024-04-11T22:33:37.240297Z", "shell.execute_reply": "2024-04-11T22:33:37.239565Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak memory: 1084.54 MiB, increment: 16.99 MiB\n" ] } ], "source": [ "%memit sparse_pipline_uint8.fit(X, y)" ] } ], "metadata": { "jupytext": { "formats": "ipynb,md" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 5 }