scikeras.utils.transformers¶
Classes
|
Default target transformer for KerasClassifier. |
Default target transformer for KerasRegressor. |
|
Convert 1D targets to 2D and back. |
- class scikeras.utils.transformers.ClassifierLabelEncoder(loss=None, categories='auto')[source]¶
Default target transformer for KerasClassifier.
- Parameters:
- lossUnion[None, str, Loss], default None
Keras Model’s loss function. Used to automatically one-hot encode the target if the loss function is categorical crossentropy.
- categoriesUnion[str, List[np.ndarray]], default “auto”
All of the categories present in the target for the entire dataset. “auto” will infer the categories from the data passed to fit.
- Attributes:
- classes_Iterable
The classes seen during fit.
- n_classes_int
The number of classes seen during fit.
- n_outputs_int
Dimensions of y that the transformer was trained on.
- n_outputs_expected_int
Number of outputs the Keras Model is expected to have.
- Parameters:
- fit(y)[source]¶
Fit the estimator to the target y.
For all targets, this transforms classes into ordinal numbers. If the loss function is categorical_crossentropy, the target will be one-hot encoded.
- Parameters:
- ynp.ndarray
The target data to be transformed.
- Returns:
- ClassifierLabelEncoder
A reference to the current instance of ClassifierLabelEncoder.
- Parameters:
y (ndarray) –
- Return type:
- fit_transform(X, y=None, **fit_params)[source]¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata()[source]¶
Returns a dictionary of meta-parameters generated when this transfromer was fitted.
Used by SciKeras to bind these parameters to the SciKeras estimator itself and make them available as inputs to the Keras model.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(y, return_proba=False)[source]¶
Restore the data types, shape and classes of the input y to the output of the Keras Model.
- Parameters:
- ynp.ndarray
Raw probability predictions from the Keras Model.
- return_probabool, default False
If True, return the prediction probabilites themselves. If False, return the class predictions.
- Returns:
- np.ndarray
Class predictions (of the same shape as the y to fit/transform), or class prediction probabilities.
- Parameters:
- Return type:
- set_inverse_transform_request(*, return_proba='$UNCHANGED$')[source]¶
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- return_probastr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
return_proba
parameter ininverse_transform
.
- Returns:
- selfobject
The updated object.
- Parameters:
self (ClassifierLabelEncoder) –
- Return type:
- set_output(*, transform=None)[source]¶
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
New in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- class scikeras.utils.transformers.RegressorTargetEncoder[source]¶
Default target transformer for KerasRegressor.
- Attributes:
- n_outputs_int
Dimensions of y that the transformer was trained on.
- n_outputs_expected_int
Number of outputs the Keras Model is expected to have.
- fit(y)[source]¶
Fit the transformer to the target y.
For RegressorTargetEncoder, this just records the dimensions of y as the expected number of outputs and saves the dtype.
- Returns:
- RegressorTargetEncoder
A reference to the current instance of RegressorTargetEncoder.
- Parameters:
y (ndarray) –
- Return type:
- fit_transform(X, y=None, **fit_params)[source]¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata()[source]¶
Returns a dictionary of meta-parameters generated when this transfromer was fitted.
Used by SciKeras to bind these parameters to the SciKeras estimator itself and make them available as inputs to the Keras model.
- Returns:
- Dict[str, Any]
Dictionary of meta-parameters generated when this transfromer was fitted.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(y)[source]¶
Restore the data types and shape of the input y to the output of the Keras Model.
- set_output(*, transform=None)[source]¶
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
New in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- class scikeras.utils.transformers.TargetReshaper[source]¶
Convert 1D targets to 2D and back.
For use in pipelines with transformers that only accept 2D inputs, like OneHotEncoder and OrdinalEncoder.
- Attributes:
- ndim_int
Dimensions of y that the transformer was trained on.
- fit(y)[source]¶
Fit the transformer to a target y.
- Returns:
- TargetReshaper
A reference to the current instance of TargetReshaper.
- Parameters:
y (ndarray) –
- Return type:
- fit_transform(X, y=None, **fit_params)[source]¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)[source]¶
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
New in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.